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Utilities Problem

Question

Suppose there are three cottages, and each needs to be connected to the gas,
water, and electric companies. Using a third dimension or sending any of the
connections through another company or cottage are disallowed. Is there a way
to make all nine connections without any of the lines crossing each other?
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Graphs

A (finite) graph is an ordered pair
(
V ,E

)
consisting of vertices V and

edges E .
v = |V | = the number of vertices
e = |E | = the number of edges
f = |F | = the number of faces

A connected graph is a graph where, given any pair of vertices z1 and z2,
one can traverse a path of edges from one to the other.

Two vertices z1 and z2 are adjacent if there is an edge connecting them. A
bipartite graph is a graph where the vertices V can be partitioned into two
disjoint sets B and W such that no two edges z1, z2 ∈ B (respectively,
z1, z2 ∈W ) are adjacent.

A planar graph is a graph that can be drawn such that the edges only
intersect at the vertices.
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Which Graphs are Planar?

Theorem (Leonhard Euler, 1750)

A finite connected graph is planar if and only if v − e + f = 2.

Theorem (Kazimierz Kuratowski, 1930; Klaus Wagner, 1937)

A finite graph is planar if and only if it does not have K5 or K3,3 as a minor.

Solution

Suppose there are three cottages, and each needs to be connected to the gas,
water, and electric companies. There is no way to make all nine connections
without any of the lines crossing each other because the Utility Graph has
v = 6, e = 9, and f = 3.
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Can We

Draw Graphs

on Other Objects?
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Riemann Surfaces

A Riemann Surface is a triple (X , {Uα}, {µα}) satisfying:

Coordinate Charts and Maps: For some countable indexing set I ,

X =
⋃
α∈I

Uα and µα : Uα ↪→ C.

Locally Euclidean: Each µα(Uα) is a connected, open subset of C; and the
composition µβ ◦ µα−1 is a smooth function.

C

⊆

µα (Uα ∩ Uβ)

µα
−1

−−−−−→

X

⊆
Uα ∩ Uβ

µβ−−−−−→

C

⊆

µβ (Uα ∩ Uβ)

Hausdorff: For distinct z ∈ Uα and w ∈ Uβ there exist open subsets

µα(z) ∈ Uα ⊆ µα(Uα)

µβ(w) ∈ Uβ ⊆ µβ(Uβ)
such that µα

−1(Uα) ∩ µβ−1(Uβ) = ∅.

P1(C) = C ∪ {∞} ' S2(R) is an example. We always embed X ↪→ R3.
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The Sphere as The Extended Complex Plane

Through stereographic projection, we
can establish a bijection between the
unit sphere S2(R) and the extended
complex plane P1(C) = C ∪ {∞}.

Definition

Define stereographic projection as that map from the unit sphere to the
complex plane.

S2(R)
∼−→ P1(C)(

u, v , w
)

=
(

2x
x2+y2+1

, 2y
x2+y2+1

, x2+y2−1
x2+y2+1

)
7→ x + i y =

u + i v

1− w
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Möbius Transformations

Definition

Rational functions of the form f (z) =
a z + b

c z + d
where[

a b
c d

]
∈ GL2(C) =

{
γ ∈ Mat2×2(C)

∣∣∣∣ a d − b c 6= 0

}
are called Möbius Transformations. We denote the collection of Möbius
Transformations by Aut

(
P1(C)

)
.

For example, the function f (z) = 1/z is also a Möbius transformation.
Geometrically, this function represents a flip along the y -axis.
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Finite Automorphism Groups of The Sphere

Proposition (Felix Klein)

The following groups are finite subgroups of Aut
(
P1(C)

)
:

Zn = 〈r |rn = 1〉 : r(z) = ζnz

Dn = 〈r , s|s2 = rn = (sr)2 = 1〉 : r(z) = ζnz s(z) =
1

z

A4 = 〈r , s|s2 = r 3 = (sr)3 = 1〉 : r(z) =
z + 2 ζ3
z − ζ3

s(z) =
z + 2

z − 1

S4 = 〈r , s|s2 = r 3 = (sr)4 = 1〉 : r(z) =
z + ζ4
z − ζ4

s(z) =
z + 1

z − 1

A5 = 〈r , s|s2 = r 3 = (sr)5 = 1〉 : r(z) =
ϕ− ζ53 z
ϕ ζ5

3 z + 1
s(z) =

ϕ− z

ϕ z + 1

where ζn = e2πi/n is a root of unity, and ϕ = 1+
√
5

2
is the golden ratio.

Conversely, if G is a finite subgroup of Aut
(
P1(C)

)
, then G is isomorphic to

one of the five types of groups above.
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Bely̆ı’s Theorem

Theorem (André Weil, 1956; Gennadĭı Vladimirovich Bely̆ı, 1979)

Let X be a compact, connected Riemann surface.

X is a smooth, irreducible, projective variety of dimension 1. In particular,
X is an algebraic variety; that is, it can be defined by polynomial
equations.

If X can be defined by a polynomial equation
∑

i,j aij z
i w j = 0 where the

coefficients aij are not transcendental, then there exists a rational function
β : X → P1(C) which has at most three critical values.

Conversely, if there exists rational function β : X → P1(C) which has at
most three critical values, then X can be defined by a polynomial equation∑

i,j aij z
i w j = 0 where the coefficients aij are not transcendental.
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Bely̆ı Maps

Denote X as a Riemann Surface. We always embed X ↪→ R3.

A rational function β : X → P1(C) is a map which is a ratio β(z) = p(z)/q(z)
in terms of relatively prime polynomials p, q ∈ C[X ]; define its degree as
deg β = max

{
deg p, deg q

}
.

Theorem (Fundamental Theorem of Algebra)

For w ∈ P1(C), denote β−1(w) =

{
z ∈ X

∣∣∣∣ p(z)− w q(z) = 0

}
. Then∣∣β−1(w)

∣∣ ≤ deg β.

w ∈ P1(C) is said to be a critical value if
∣∣β−1(w)

∣∣ 6= deg β.

A Bely̆ı map is a rational function β such that its collection of critical
values w is contained within the set {0, 1, ∞} ⊆ P1(C).
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Examples

Denote X = P1(C) = C ∪ {∞} ' S2(R) as the Riemann Sphere.

deg β = n : β(z) = zn

deg β = 2 n : β(z) =
4 zn(

zn + 1
)2

deg β = 12 : β(z) =

(
z4 + 2

√
2 z
)3(

2
√

2 z3 − 1
)3

deg β = 24 : β(z) =
1

108

(
z8 + 14 z4 + 1

)3
z4
(
z4 − 1

)4
deg β = 60 : β(z) =

1

1728

(
z20 + 228 z15 + 494 z10 − 228 z5 + 1

)3
z5
(
z10 − 11 z5 − 1

)5
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Alexander Grothendieck (March 28, 1928 – ??)

http://en.wikipedia.org/wiki/Alexander_Grothendieck
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Dessins d’Enfant

Fix a Bely̆ı map β : X → P1(C). Denote the preimages

B = β−1
(
{0}
)

W = β−1
(
{1}
)

E = β−1
(
[0, 1]

)
X

β−−−−−→ P1(C)y y y y{
black

vertices

} {
white

vertices

} {
edges

}
R3

The bipartite graph ∆β =
(
V ,E

)
with vertices V = B ∪W and edges E is

called Dessin d’Enfant. We embed the graph on X in 3-dimensions.

I do not believe that a mathematical fact has ever struck me quite so strongly
as this one, nor had a comparable psychological impact. This is surely because
of the very familiar, non-technical nature of the objects considered, of which
any child’s drawing scrawled on a bit of paper (at least if the drawing is made
without lifting the pencil) gives a perfectly explicit example. To such a dessin
we find associated subtle arithmetic invariants, which are completely turned
topsy-turvy as soon as we add one more stroke.

– Alexander Grothendieck, Esquisse d’un Programme (1984)
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Valency Lists and Passports

Definition

The valency of a vertex Pi is the number mi of edges coming out of that
vertex. The valency of a face Rk is the number tk found by interchanging black
vertices with midpoints of faces.

Definition

Say that we have a bipartite graph. A valency list is a collection of valencies
{mi | i ∈ I}, {nj | j ∈ J} and {tk | k ∈ K} for the “black” vertices, “white”
vertices, and faces, respectively. If ai , bj , and ck denotes the multiplicities of
the numbers in these lists, we use the short-hand notation[∏

i mi
ai ,
∏

j nj
bj ,
∏

k tk
ck
]

as the passport.

The Degree Sum Formula is the identity

|I |+ |J|+ |K | − 2 =
∑
i∈I

mi =
∑
j∈J

nj =
∑
k∈K

tk

=
∑
i

ai mi =
∑
j

bj nj =
∑
k

ck tk
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Example

The valency lists {2, 2, 3}, {1, 1, 1, 2, 2} and {7} can be expressed as
the passport [22 · 3, 13 · 22, 71].

This corresponds to two bipartite graphs:

Valency lists do not uniquely determine a graph.
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Riemann’s Existence Theorem

We can always find a Bely̆ı map β : X → P1(C) that corresponds to a given
passport.

Theorem

Say that we are given a bipartite graph on a compact, connected Riemann
surface X , where the vertices and faces have valencies {mi | i ∈ I}, {nj | j ∈ J}
and {tk | k ∈ K}. Then there exists a Belyi map β : X → P1(C) such that

β−1(0) =
{
Pi

∣∣ i ∈ I
}

β−1(1) =
{
Qj

∣∣ j ∈ J
}

β−1(∞) =
{
Rk

∣∣ k ∈ K
}

where the vertices Pi , Qj , and Rk have valencies mi , nj , and tk , respectively.
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Which can be

Realized as a

Dessin d’Enfant?

Purdue Research in Mathematics Experience Associating Finite Groups with Dessins d’Enfants



Introduction and Definitions
Dessins d’Enfants

Past Work
Current Progress

Esquisse d’un Programme
Passports
Riemann’s Existence Theorem
Platonic Solids

Platonic, Archimedean, Catalan, and Johnson Solids

Definition

A Platonic solid is a regular, convex polyhedron. They are named after
Plato (424 BC – 348 BC). Aside from the regular polygons, there are five
such solids.

An Archimedean solid is a convex polyhedron that has a similar
arrangement of nonintersecting regular convex polygons of two or more
different types arranged in the same way about each vertex with all sides
the same length. Discovered by Johannes Kepler (1571 – 1630) in 1620,
they are named after Archimedes (287 BC – 212 BC). Aside from the
prisms and antiprisms, there are thirteen such solids.

A Catalan solid is a dual polyhedron to an Archimedean solid. They are
named after Eugène Catalan (1814 – 1894) who discovered them in 1865.
Aside from the bipyramids and trapezohedra, there are thirteen such solids.

A Johnson solid is a convex polyhedron with regular polygons as faces but
which is not Platonic or Archimedean. They are named after Norman
Johnson (1930) who discovered them in 1966. There are ninety-two
Johnson solids.
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Platonic Solids

Purdue Research in Mathematics Experience Associating Finite Groups with Dessins d’Enfants



Introduction and Definitions
Dessins d’Enfants

Past Work
Current Progress

Esquisse d’un Programme
Passports
Riemann’s Existence Theorem
Platonic Solids

http://mathworld.wolfram.com/RegularPolygon.html

http://en.wikipedia.org/wiki/Platonic_solids
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Rigid Rotations of the Platonic Solids

We have an action ◦ : PSL2(C)× P1(C)→ P1(C).

Zn =
〈
r
∣∣ rn = 1

〉
and Dn =

〈
r , s

∣∣ s2 = rn = (s r)2 = 1
〉

are the rigid
rotations of the regular convex polygons, with

r(z) = ζn z and s(z) =
1

z
.

A4 =
〈
r , s

∣∣ s2 = r 3 = (s r)3 = 1
〉

are the rigid rotations of the
tetrahedron, with

r(z) = ζ3 z and s(z) =
1 − z

2 z + 1
.

S4 =
〈
r , s

∣∣ s2 = r 3 = (s r)4 = 1
〉

are the rigid rotations of the octahedron
and the cube, with

r(z) =
ζ4 + z

ζ4 − z
and s(z) =

1 − z

1 + z
.

A5 =
〈
r , s

∣∣ s2 = r 3 = (s r)5 = 1
〉

are the rigid rotations of the
icosahedron and the dodecahedron, with

r(z) =

(
ζ5 + ζ5

4
)
ζ5 − z(

ζ5 + ζ54
)
z + ζ5

and s(z) =

(
ζ5 + ζ5

4
)
− z(

ζ5 + ζ54
)
z + 1

.
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Rotation Group Dn: Regular Convex Polygon

β(z) =

(
zn + 1

)2
4 zn

: v = n + n, e = 2 · n, f = 2
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Rotation Group A4: Tetrahedron

β(z) = −
64 z3

(
z3 − 1

)3(
8 z3 + 1

)3 : v = 4 + 6, e = 2 · 6, f = 4
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Main Goals

If we are given a valency list or a passport, how
do we compute the corresponding Bely̆ı map?

How do we draw a Dessin if we have its
passport?
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Archimedean Solids

and

Catalan Solids
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Proposition (Wushi Goldring, 2012)

Let %(w) be a rational function. The composition % ◦ β is also a Bely̆ı map for
every Bely̆ı map β : X → P1(C) if and only if % is a Bely̆ı map which sends the
set
{

0, 1, ∞
}

to itself.

Proposition (Nicolas Magot and Alexander Zvonkin, 2000)

The following % are Bely̆ı maps which send the set
{

0, 1, ∞
}

to itself.

%(w) =



−(w − 1)2/(4w) is a rectification,

(4w − 1)3/(27w) is a truncation,

1/w is a birectification,

(4− w)3/(27w 2) is a bitruncation,

4 (w 2 − w + 1)3/
(
27w 2 (w − 1)2

)
is a rhombitruncation,

(w + 1)4/
(
16w (w − 1)2

)
is a rhombification,

7496192 (w + θ)5

25 (3 + 8 θ)w
(
88w − (57 θ + 64)

)3 is a snubification,

Purdue Research in Mathematics Experience Associating Finite Groups with Dessins d’Enfants
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Platonic Solid Archimedean Solid Catalan Solid Rotation Group

Regular Polygon
Prism Bipyramid

DnAntiprism Trapezohedron

Tetrahedron Truncated Tetrahedron Triakis Tetrahedron A4

Truncated Octahedron Tetrakis Hexahedron

Truncated Cube Triakis Octahedron

Octahedron Cuboctahedron Rhombic Dodecahedron
S4Cube Truncated Cuboctahedron Disdyakis Dodecahedron

Rhombicuboctahedron Deltoidal Icositetrahedron

Snub Cube Pentagonal Icositetrahedron

Truncated Icosahedron Pentakis Dodecahedron

Truncated Dodecahedron Triakis Icosahedron

Icosahedron Icosidodecahedron Rhombic Triacontahedron
A5Dodecahedron Truncated Icosidodecahedron Disdyakis Triacontahedron

Rhombicosidodecahedron Deltoidal Hexecontahedron

Snub Dodecahedron Pentagonal Hexecontahedron
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Johnson Solids
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2013 PRiME’s Results

Proposition (K. Biele, Y. Feng, D. Heras, and A. Tadde, 2013)

There are explicit Bely̆ı maps β for

Wheel/Pyramids (J1, J2)

Cupola (J3, J4, J5)

Elongated Pyramids (J7, J8, J9)

Diminished Trapezohedron

which have rotation group Aut(β) ' Zn; and

Gyroelongated Bipyramid (J17)

Dipole/Hosohedron

Truncated Trapezohedron

which have rotation group Aut(β) ' Dn.

Approach

Following Magot and Zvonkin, reduce to easier cases using “hypermaps”
φ : P1(C)→ P1(C), then composing β = φ ◦ f where f : P1(C)→ P1(C) is a
Bely̆ı map as a function of either zn or 4 zn/(zn + 1)2 such that Aut(f ) ' Zn or
Aut(f ) ' Dn, respectively.
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Results: Rotation Group Zn

Wheel/Pyramids (J1, J2)

φ(w) =
w3 (w + 8)

64 (w − 1)

Cupola (J3, J4, J5)

φ(w) =
4w4(w2 − 20w + 105)3

(7w − 48)3(3w − 32)2(5w + 12)

Elongated Pyramids (J7, J8, J9)

φ(w) =
4 (835+872

√
2)w4 (w−1)3

[
(11+8

√
2)w+1

][
(8+9
√
2)w+1

]3 [
(8−5
√
2)w−1

]
Diminished Trapezohedron

φ(w) =
4 (835− 872

√
2)w4 (w − 1)3

[
(11− 8

√
2)w + 1

][
(8− 9

√
2)w + 1

]3 [
(8 + 5

√
2)w − 1

]
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Gyroelongated Bipyramid (J17)

φ(w) =
1728w 5 (w − 1)

25 (11 + 18ϕ) (4w − ϕ3)3

Dipole/Hosohedron

φ(w) = w

Truncated Trapezohedron

φ(w) =
25 (11 + 18ϕ)w 3(ϕ3 w − 4)3

1728(w − 1)

Purdue Research in Mathematics Experience Associating Finite Groups with Dessins d’Enfants

http://en.wikipedia.org/wiki/Gyroelongated_bipyramid
http://en.wikipedia.org/wiki/Gyroelongated_square_bipyramid
http://en.wikipedia.org/wiki/Dipole_graph
http://en.wikipedia.org/wiki/Hosohedron
http://en.wikipedia.org/wiki/Truncated_trapezohedron


Introduction and Definitions
Dessins d’Enfants

Past Work
Current Progress

Work of Magot and Zvonkin
Archimedean and Catalan Solids
Johnson Solids
2013 PRiME

2013 PRIME Limitations

Rudimentary software was developed to help
with the research

Only a few Johnson Solids were really examined
for Dessin d’Enfants
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2014 PRiME’s Approach

Definition

A Johnson solid is a convex polyhedron with regular polygons as faces but
which is not Platonic or Archimedean. They are named after Norman Johnson
(1930) who discovered them in 1966. There are ninety-two Johnson solids.

Proposition

The symmetry groups of the Johnson solids are either cyclic Zn or dihedral Dn.

Approach

Following Magot and Zvonkin, reduce to easier cases using “hypermaps”
φ : P1(C)→ P1(C), then composing β = φ ◦ f where f : P1(C)→ P1(C) is a
Bely̆ı map as a function of either zn or 4 zn/(zn + 1)2 such that Aut(f ) ' Zn or
Aut(f ) ' Dn, respectively.
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Reduction to Hypergraphs

Diminished Trapezohedron

φ(w) =
4 (835− 872

√
2)w 4 (w − 1)3

[
(11− 8

√
2)w + 1

][
(8− 9

√
2)w + 1

]3 [
(8 + 5

√
2)w − 1

]
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Reduction by Hypergraphs

P1 Q1

Q2

Q3

Q4

Q5

1 2

2

2

2

2

1 2
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2014 PRiME’s Results

Proposition (E. Baeza, L. Baeza, C. Lawrence, and C. Wang, 2014)

There are explicit Bely̆ı maps β for

Wheel/Pyramids (J1, J2)

Cupola (J3, J4, J5)

Rotunda (J6)

Elongated Pyramids (J7, J8, J9)

Diminished Trapezohedron

Gyroelongated Pyramid (J10, J11)

Augmented Triangular Prism (J49)

Tridiminished Icosahedron (J63)

Augmented Tridiminished Icosahedron (J64)

which have rotation group Aut(β) ' Zn.
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2014 PRiME’s Results (cont’d)

Proposition (E. Baeza, L. Baeza, C. Lawrence, and C. Wang, 2014)

There are explicit Bely̆ı maps β for

Bipyramid (J12, J13)

Elongated Bipyramid (J14, J15, J16)

Gyroelongated Bipyramid (J17)

Gyrobifastigium (J26)

Orthobicupola (J27, J28, J30)

Gyrobicupola (J29, J31)

Elongated Orthobicupola (J35, J38)

Elongated Gyrobicupola (J36, J37, J39)

Dipole/Hosohedron

Truncated Trapezohedron

Bifrustum/Truncated Bipyramid

Triaugmented Prism (J51)

Parabiaugmented Prism (J55)

Triaugmented Hexagonal Prism (J57)

Parabiaugmented Dodecahedron (J59)

Snub Disphenoid (J84)

Snub Square Antiprism (J85)

Bilunabirotunda (J91)

which have rotation group Aut(β) ' Dn.
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Results: Rotation Group Dn

Elongated Bipyramid (J14, J15, J16)

φ(w) =
w (32w − 5)4

(80w + 1)3

Orthobicupola (J27, J28, J30)

φ(w) =
(w − 2.411)4 (w + 0.138)4

w (w + 3.086)3 (w − 0.441)4

Elongated Gyrobicupola (J36, J37, J39)
φ(w) =[

(w3+(0.739+0.223 i)w2−(0.754+0.034 i) w+(0.002−0.020 i)
]4

w
[
w−(0.041−0.283 i)

]3 [
w2−(2.004+0.189 i) w+(0.005+0.234 i)

]4
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How do we
Compute

these Hypermaps?
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Computing Bely̆ı Maps

Say that ∆ =
(
B ∪W , E

)
is a loopless, connected, bipartite planar graph on

the Riemann Sphere S2(R) ' P1(C) = C ∪ {∞}.

The “black” vertices are B =
{
Pi

∣∣ i ∈ I
}

for some set I , where each
“black” vertex Pi has mi edges incident.

The “white” vertices are W =
{
Qj

∣∣ j ∈ J
}

for some set J, where each
“white” vertex Qj has nj edges incident, i.e., “black” vertices adjacent.

The midpoints of the faces are F =
{
Rk

∣∣ k ∈ K
}

for some set K , where
each face Rk has tk “white” vertices adjacent.

The finite sets
{
mi

∣∣ i ∈ I
}

,
{
nj
∣∣ j ∈ J

}
, and

{
tk
∣∣ k ∈ K

}
are called the

valencies of the graph.
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Computing Bely̆ı Maps

Problem

Find a Bely̆ı map β : P1(C)→ P1(C) such that its Dessin d’Enfant is Γ. That
is, find two relatively prime polynomials p(z) and q(z) such that

B = β−1(0) =
{
Pi ∈ P1(C)

∣∣ p(Pi ) = 0
}

.

W = β−1(1) =
{
Qj ∈ P1(C)

∣∣ p(Qj) = q(Qj)
}

.

F = β−1(∞) =
{
Rk ∈ P1(C)

∣∣ q(Rk) = 0
}

.

We must have the factorizations

p(z) = +p0
∏
i∈I

[
z − Pi

]mi

p(z)− q(z) = = −q0
∏
j∈J

[
z − Qj

]nj
q(z) = −r0

∏
k∈K

[
z − Rk

]tk
=⇒ β(z) = −p0

r0

∏
i∈I

[
z − Pi

]mi

∏
k∈K

[
z − Rk

]tk

for some nonzero constants p0, q0, and r0.
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Computing Bely̆ı Maps

Existence Theorem (Bernhard Riemann, 1850’s)

At least one such solution exists!

Approach

Given valencies
{
mi

∣∣ i ∈ I
}

,
{
nj
∣∣ j ∈ J

}
, and

{
tk
∣∣ k ∈ K

}
such that

|I |+ |J|+ |K | − 2 =
∑
i∈I

mi =
∑
j∈J

nj =
∑
k∈K

tk ,

find nontrivial Pi , Qj , Rk , p0, q0, r0 ∈ P1(C) such that

p0
∏
i∈I

[
z − Pi

]mi

+ q0
∏
j∈J

[
z − Qj

]nj
+ r0

∏
k∈K

[
z − Rk

]tk
= 0

identically as a polynomial in z .
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Future Work: Rotation Group Zn

Elongated Cupola (J18, J19, J20)

Elongated Rotunda (J21)

Gyroelongated Cupola (J22, J23, J24)

Gyroelongated Rotunda (J25)

Orthocupolarotunda (J32)

Gyrocupolarotunda (J33)

Elongated Orthocupolarotunda (J40)

Elongated Gyrocupolarotunda (J41)

Augmented Prism (J49, J52, J54)

Biaugmented Prism (J50, J53)

Metabiaugmented Prism (J56)

Augmented Dodecahedron (J58)

Metabiaugmented Dodecaherdon (J60)

Triaugmented Dodecahedron (J61)

Metabidiminished Icosahedron (J62)

Augmented Truncated Tetrahedron (J65)

Augmented Truncated Cube (J66)

Augmented Truncated Dodecahedron (J68)

Metabiaugmented Truncated Dodecahedron (J70)

Triaugmented Truncated Dodecahedron (J71)

Gyrate Rhombicosidodecahedron (J72)

Metabigyrate Rhombicosidodecahedron (J74)

Trigyrate Rhombicosidodecahedron (J75)

Diminished Rhombicosidodecahedron (J76)

Paragyrate Diminished Rhombicosidodecahedron (J77)

Metabidiminished Rhombicosidodecahedron (J81)

Tridiminished Rhombicosidodecahedron (J83)

Sphenocorona (J86)

Sphenomegacorona (J88)

Hebesphenomegacorona (J89)

Triangular Hebesphenorotunda (J92)
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Future Work: Rotation Group Dn

Orthobirotunda (J34)

Elongated Orthobirotunda (J42)

Elongated Gyrobirotunda (J43)

Gyroelongated Bicupola (J44, J45, J46)

Gyroelongated Birotunda (J48)

Biaugmented Truncated Cube (J67)

Parabiaugmented Truncated Dodecahedron(J69)

Parabigyrate Rhombicosidodecahedron (J73)

Parabidiminished Rhombicosidodecahedron (J80)

Disphenocingulum (J90)
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Questions?
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